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This paper analyzes the processes of structure formation of disperse systems under dynamic and static condi-
tions in terms of synergetics and the theory of catastrophes. The efficiency of using these methodological ap-
proaches together with adopted instrumental methods of investigating the properties of structured dispersions
is shown.

The traditional method of collecting data necessary for establishing the laws of evolution of disperse structures
under dynamic conditions consists of plotting and analyzing complete rheological curves. The latter represent the de-
pendences of the effective viscosity η on the shear stress P (or the deformation rate gradient ε

.
) and the dependence

of ε
.
 on P with the necessary fulfillment of the isotropy condition of the structure destruction in the running clearance

of the viscosimeter.
According to the classification of [1], structured disperse systems are characterized by the existence of two

types of flow curves. The fairly well studied rheological curves of type I feature a unique stress dependence of the
viscosity and the rate of shear. The less-studied curves of type II have domains of variability of the viscosity or the
rate of deformation development, to which there corresponds an indefinite change in the stress: a decrease in P in a
certain range of ε

.
. Such an anomalous effect shows up as an S-shaped form of the above curves.

Rheological S-shaped curves were obtained in [2] for some cleye suspensions and investigated in [3] in terms
of the molecular-kinetic theory of a non-Newtonian flow proposed therein (Fig. 1). Analogous ambiguous dependences
were also explained in [4–8}. In particular, Figure 2 shows a plot of such a kind for the water suspension of cellulose.

A possible interpretation of the anomalous flow as a consequence of the appearance of a local discontinuity
of the structure (i.e., when the shear does not propagate throughout the volume of the system) was likely first given
in [9, 10]. The theory of this phenomenon was developed in [11–13] on the basis of notions about the presence in the
structure of local microdefects whose coalescence under the shearing conditions gives rise to a macroinhomogeneity. In
this case, the ratio between the relaxation times of the processes proceeding in the vicinity of the discontinuity nucleus
at its development is taken into account. A discontinuity is detected experimentally [9] by a sharp decrease in the
shear stress as it reaches the critical, for a given system, deformation rate ε

.
. The subsequent increase in P with in-

creasing ε
.
 reflects the behavior of the system only in the region of the discontinuity and not throughout its volume.

The hypothesis about such a mechanism of destruction in the shear flow was confirmed in [11, 14] by micro-
photographs of the structure of aqueous dispersions of calcium bentonite. The kind of discontinuity thereby strongly
depends [8] on the solid-phase content in the dispersion medium and correlates [9] with the graphically general view
of the dependence of the structure strength on the particle concentration. The following variants are possible: true dis-
continuity under the conditions of liquid-phase deficiency (ϕ >> ϕ2c); the formation of one (ϕ ≥ ϕ2c) or several
(ϕ << ϕ2c) slip zones at an excess content of the liquid phase with the formation of solid-like layers.

The appearance and further development of a discontinuity in the deformation process prevents [9] the shear
from propagating throughout the volume of the system. Such a phenomenon leads to a measurement data corruption and,
consequently, to the impossibility of plotting a rheological curve. This is evidenced [15] by the absence of the reproduci-
bility of flow curves in the case of downward and upward motion (the presence of hysteresis loops, Fig. 3). This effect
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is most pronounced at ϕ > ϕ2c. It should be noted that the anomalous dependence of viscosity on the shear stress, inherent
in type-II curves, is revealed [16–19] even in low-concentrated colloid gels with a fractal structure (Fig. 4).

Thus, with increasing intensity of external actions qualitative changes in the behavior of disperse systems are
observed: the initial structure is destroyed and a new, layer structure is formed. This phenomenon finds reflection in a
nonstandard shape of rheological curves.

To further develop the notions on the laws and mechanism of formation, stability, and destruction of struc-
tured dispersions, it is expedient to add [20, 21] to the explanation of their possible anomalous behavior as a specific-
ity of coagulation under dynamic conditions the analysis of the processes in terms of synergetics and the theory of
catastrophes taken together. As is known, synergetics deals [22–28] with the investigation of the processes of self-or-
ganization of structures of various nature formed in systems that are far from equilibrium, and the theory of catastro-
phes describes [29–31] those threshold situations in which dissipative self-organized structures arise, are maintained,
and lose stability. Within the framework of this approach, disperse systems under dynamic conditions are interpreted
as self-organized systems whose evolution in space and time is accompanied by the formation of dissipative structures.
It should be noted that the whole variety of real stepwise changes of states of such systems (their qualitative restruc-
turing) caused by smoothly varying external actions is described by a small finite number of canonical models — ca-
tastrophes. And although there is still no [26, 27, 32–34] rigorous evolution criterion or a unanimous opinion about its

Fig. 1. Viscosity logarithm η as a function of the shear stress P for 10% sus-
pension of Na-bentonite [3]. η, Pa⋅sec; P, Pa.

Fig. 2. Deformation rate ε
.
 as a function of the shear stress P for water suspen-

sion of cellulose (sulfate white, concentration of 2.1%) [7], ε
.
, sec−1; P, Pa.

Fig. 3. Full rheological flow curves log η(P) of water dispersions of calcium
bentonite for systems with ϕ = 20% (ϕ > ϕc) (a) and ϕ = 11% (ϕ < ϕc) (b);
solid lines with open circles indicate measurements with increasing P, dashed
lines with solid circles — with decreasing P; arrows show the directions of
measurements of P [15]. η, Pa⋅sec; P, Pa.

489



choice, the concept of dissipative structures can offer much [32, 35, 36] for understanding the problems of self-organi-
zation and structure formation.

Since the theory of catastrophes gives a method for modeling certain discontinuities of developing processes
of various kinds, Trofimova [37] suggested interpreting the possible forms of qualitative structural changes in the shear
flow as catastrophes. In particular, a graphic illustration of radical changes in the character of the flow of structured
disperse systems is the S-shaped bends of the rheological curves (Figs. 1–3). Their anomalous form is identical to the
standard curve of stationary states. According to [23], "...the number of stationary states of an open system can
strongly increase away from equilibrium," and in an S-shaped model of a system with several stationary states X
"...upper and lower values of X are stable and intermediate values are unstable." This fact permits the existence of
three stationary modes at the same values of some (control) parameter, by virtue of which hysteresis phenomena are
possible [25]. The bend points of the curve correspond [25, 38–40] to the bifurcation values of the parameters at
which the number of stationary states changes stepwise ("catastrophically") with a simultaneous change in the type of
stability. In so doing, the unstable states in the middle portion are practically never realized [39] in real systems.

Thus, characteristic of the curves of stationary states are features which in the general case are typical of flow
curves II. It should be noted that the analogy is not only in appearance but in meaning as well. According to [3], in
some zone of a sharp decrease in viscosity at one and the same shear stress two stable and one unstable flow condi-
tions are observed (Fig. 1). Consequently, the theoretical S-shaped curve adequately reproduces the real picture of the
behavior of structured dispersions under dynamic conditions. Such an assumption in situations where experimental data
are difficult to obtain permits predicting the character of the flow curves.

In the case of rheological curves (Fig. 3) on which the region of recovery of tresses is due to the discontinu-
ity, this model takes into account the phenomenon of stepwise transition of a deformable system from the state with
a practically undestroyed structure to a qualitatively new state with a specific (layered) kind of destruction. The
"threshold" stresses at which changes in the shape of rheological curves are noted are considered as bifurcation
stresses. The anomalous portion between the bend points corresponds to unrealizable states of the volume isotropic
damage of the structure, since a full rheological curve in the region where the effective viscosity changes from ηmax
to ηmin can only be obtained [15] when "a pure uniform shear" is realized. The lower portion of the plot [15] corre-
sponds to corrupted measurement data.

As mentioned above, for certain systems a family of rheological curves with a more pronounced S-shape with
increasing concentration of the solid phase can be obtained. In particular, this trend is clearly seen [11, 15] in analyz-
ing the flow curves of calcium bentonite water dispersions (Fig. 3). It was suggested [41] to use an assembly-type ca-
tastrophe to investigate the features of the flow at a shear deformation, since the considered curve of stationary states
represents the cross-sections of this model at fixed values of ϕ (Fig. 5). A catastrophe of such a type describes the
process under investigation by one state variable (η or ε

.
) and two control parameters P and ϕ and is represented as a

qualitative model (surface) in a three-dimensional space of these generalized coordinates (Fig. 5a). The most interesting
property of this surface is the presence of two lines of wrinkles originating at the so-called assembly point B and

Fig. 4. Full rheological curve log η(log P) for 2.5% suspension of monodis-
perse spherical SiO2 particles (d = 7 nm) in ester (triangles — experiment,
curve — calculation) [16]. η, Pa⋅sec; P, Pa.
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forming on the plane of control parameters P and ϕ a bifurcation curve — a semicubic parabola with a cusp at the
point B1 (Fig. 5b). These points correspond [9] to the first critical concentration ϕ1c, upon reaching which there ap-
pears a spatial structural net and anomalies in the mechanism of dispersion system flow begin to show up. Stable sta-
tionary regimes correspond geometrically to the points of the surface of the variety of assembly-type catastrophes lying
on the upper and lower sheets on the outside of the wrinkle curve, and unstable ones — to the point on the middle
sheet inside the wrinkle curve ("inaccessibility region," which can be interpreted as a zone of unrealizable states of
isotropic damage of the structure).

The qualitatively different behavior of the system is determined by different combinations of control parame-
ters. In the case under consideration, the parameter ϕ is called the splitting parameter, since when its critical value is
exceeded the model surface splits into two sheets, i.e., its change specifies the very probability of indefiniteness of the
dependence of η on P and the appearance of jumps. If the condition ϕ > ϕ1c is met, then, when the second (normal)
control parameter P changes, the right edge of the assembly is reached, which leads to a jump from one stable sta-
tionary regime of flow with a practically undestroyed structure on the upper sheet to another, but with a local slip
zone on the lower sheet. The wrinkle lines (the right and left edges of the assembly) correspond to exactly those com-
binations of control parameters which initiate stepwise changes of state. Such a notion, integrating in one scheme the
whole set of possible variants of the above rheological curves, is fairly consistent with the known experimental results
[11, 15] and gives complete enough information about qualitative changes in the rheological behavior of disperse sys-
tems under continuous shear deformations caused by discontinuities.

It should be noted that in modeling real situations with sudden catastrophic changes of regimes, it is necessary
to take into account [25] the presence of two main directions connecting the geometry of catastrophes to the system
being investigated (maximal delay and Maxwell principles). The choice of one of the principles is determined by the
nature of the phenomenon itself. For instance, in the above-considered case, the first principle is realized according to
which the system makes a jump to another state only if it has no other choice. Moreover, it is expedient to use it, in
particular, in describing and analyzing phenomena associated with the loss of physicochemical stability and hysteresis
effects [11, 15]. Hysteresis is [29] one of the basic qualitative features of the assembly-type catastrophe in the case of
using the maximal delay principle.

Fig. 5. Viscosity η of calcium bentonite water suspension as a function of the
shear stress P and the dispersed phase content ϕ (assembly-type catastrophe,
maximum delay principle): a) model surface in the coordinates of η, ϕ, and P
[1 and 2) lines of folds; 3) cross section of the model; B, assembly point]; b)
projection of the model onto the plane of control parameters P and ϕ [4) bi-
furcation curve, B1, bifurcation point]. η, Pa⋅sec; P, Pa; ϕ, %.
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As is known from [11], the appearance of a discontinuity means that the continuum in the change of velocity
v in the cross section of the viscosimeter running clearance ∆r at ε

.
 > ε

.
c is broken (Fig. 6a). The analysis of the ve-

locity distribution scheme at a continuous shear deformation has shown that the observed effect can be described fairly
well [24] by a model whose geometry obeys the Maxwell principle. In this case, there arises a situation analogous to
the formation of the so-called shock wave (break) characterized by sharp changes in the profile. With increasing ve-
locity of shear in passing through some critical value of ε

.
c the shock wave suddenly kicks the system into a new

state. It should be noted that the profile of velocities v given in Fig. 6b is interpreted in [42] as assembly-type catas-
trophe cross sections for various ε

.
. Here the deformation rate acts as a splitting parameter predetermining the possibil-

ity of a considerable change in the clearance linear velocity profile.
Extending the list of possible kinds of schematic representations of v profiles corresponding to different vari-

ants of structural changes in systems in a shear flow by using the nonlinear wave theory seems informative as well.
Since a rigorous mathematical analysis is rather difficult, it makes sense to qualitatively determine the most important
features of the break formation on the basis of an analogy with the investigations of collective phenomena in plasma,
which also use [43] the model notion of the shock wave. The character of the structure of the latter depends on the
viscosity of the system being investigated. If the viscosity is small enough, then the general qualitative profile shape
corresponding to the velocity jump is a shock wave with a decaying oscillating structure located ahead of its front
(soliton packet). The lower the viscosity, the larger the number of oscillations (breaks). With increasing viscosity an
ordinary shock wave without oscillations with a monotonous structure takes place. Thus, ordinary aperiodic shock
waves and soliton packets are interpreted as various limiting situations for one and the same nonlinear process. As ap-
plied to disperse systems, these model notions agree with experimental results: to monotonous and oscillating profiles
there correspond single and multiple discontinuities.

As is shown in [11, 15], a possible cause of a discontinuity is a jump of the solid-phase concentration in the
vicinity of macrononuniformity boundaries with the formation of shear planes. In terms of the theory of catastrophes,
to establish the most important features of the appearance of higher-density zones, one can draw on the analogy [42]
with Ya. B. Zeldovich’s "pancake production" (formation of particle clusters). The theory of "pancakes" describes [30,
31, 44] such structure transformations by means of an assembly-type catastrophe (taking into account the existence of
two scenarios of the development of the processes of compacted structure formation). In the first case, the model of
the appearance of three-flow (S-shaped) configurations is considered. Such an approach is appropriate in interpreting
the effect of structured dispersions; a collapse leads to the appearance of layering and breaks in the system. The sec-
ond approach illustrates, by means of notions of the shock wave, the generation of compacted regions at a shear de-
formation. This model takes into account the collisions of particles. Therefore, the stepwise transition of the system to
a new state at a certain value of ε

.
c is accompanied by the transfer of particles and their "sticking" to the structure of

Fig. 6. Distribution of velocities v in the flow of high-concentration disperse
systems in the spacing ∆r between the surfaces of coaxial cylinders of a rota-
tional viscosimeter: a) at ε

.
 = const [1) ε

.
 > ε

.
c; 2) ε

.
 < ε

.
c] [9]; b) at continuously

varying ε
.
 (assembly-type catastrophe, Maxwell principle: model surface in the

coordinates of v, ∆r, and ε
.
). v, m/sec; ∆r, mm; ε

.
, sec−1.
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the main layer. Such an interpretation describes the process of "lamination" of solid-phase particles promoting the for-
mation of a compacted structure [11].

Because the notions of the shock wave are identical to the notion of the phase transition of the first kind in
the region of coexistence of various phases [24], it is suggested to consider, from this point of view, the anomalous
behavior at a shear of the above-mentioned 2.5% colloid gels with a fractal structure. This weakly defined but clearly
detectable anomaly is characterized [16–19] by a stepwise transition from the state with a solid-like (large) viscosity
to the state with a liquid-like (small) viscosity at a continuous increase in the shear stress and is accompanied by a
stepwise change in η by nine orders of magnitude on passing over the threshold value of P (Fig. 4). In measuring the
gel viscosities in the regime of a continuous shear in the 10−8–10−3 sec−1 range of deformation rates, we [18] obtained
on one flow curve regions of solid- and liquid-like states and a region of transition from one state to another, in
which a coexistence of solid- and liquid-like layers is presumed. The possibility of system layering into two phases
with a different concentration of particles is evidenced by the presence on the flow curve of a characteristic Van der
Waals loop. As is known [29], the restructuring of the isotherms of the Van der Waals equation of state is a typical
example of the application of an assembly-type catastrophe whose geometry is in agreement with the Maxwell princi-
ple. The fact that a real disperse system can have two states is interpreted by the theory as a bimodality and, along
with the stepwise change in viscosity, serves as a confirmation of the presence of a "catastrophe."

As mentioned above, structured dispersions away from the thermodynamic equilibrium in the field of external
actions are typical synergetic dissipative systems. In the course of their evolution, under dynamic conditions, a consid-
erable reorganization of the microstructure at a certain critical value of the velocity of shear (parameter corresponding
to the bifurcation point) occurs. The initial structure is split into layers (i.e., local volumes bounded by the slip sur-
faces). Inside these volumes contacts between dispersed-phase particles are not broken and the degree of nonunifor-
mity, which corresponded to the moment of the appearance of the initial (static) structure in the system, is preserved.
A breakage of cross-links, with respect to the flow direction, between the structural elements of the initial cellular-type
space mesh and a displacement of the liquid phase from the spacing between particles when the cell boundaries break
down are observed. There is a clear tendency for a transformation of the cellular structure to a layer structure, which
becomes most pronounced when the solid phase concentration decreases within limits sufficient for self-organization.
The cells extend in the shear direction and dissipative layer structures are formed. The development of these structures

Fig. 7. Transformation of the flow curves ε
.
(P) with increasing vibration inten-

sity I in a combination of a continuous shear with an oscillation orthogonally
directed to it (model surface of the assembly-type catastrophe in the coordi-
nates of ε

.
, P, and I); dependences ε

.
(P) and their corresponding structures of

dispersions: 1) without vibration; 2) at a vibration with optimum parameters.
ε
.
, sec−1; P, Pa; I, m2⋅sec−3.
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was preceded [11] by a compaction in local volumes of particle microaggregates with a gradual formation of shear
planes in the zones of the largest aggregations of packing defects.

Thus, at a deformation in the disperse system irreversible processes of restructuring caused by the cooperative
interaction of defects can proceed [25]. A deformable dispersion with defects (initial local imperfections) displays a be-
havior which can be represented as an asymmetric bifurcation diagram. In terms of the theory of catastrophes to such
an evolution pattern there corresponds the above-mentioned assembly-type catastrophe. It also seems informative to de-
scribe the mechanism of layering of disperse systems as a process of formation of contrast dissipative structures [45].
Since for the existence of such a structure the presence of a set of "activator-inhibitor"-type parameters in the literal
sense is not necessary, it is expedient to consider, as a deforming variable, the initial nonuniformity [46].

Consequently, the moment of the appearance of a layering is a precursor of the transition to the accumulation
of reversible damages under the action of external force fields. The superposition on a deformable system of a vibra-
tion with optimum parameters radically changes [9] the character of its destruction in the shear flow. A destruction of
compacted layers with an avalanche formation of microaggregates of particles with simultaneous formation of a struc-
ture in the form of cells with loosened coagulation contacts is observed [14], and the slip zones thereby disappear.
From the point of view of synergetics such an effect can be explained [47] by the increase in the degree of nonequili-
brium of the system under an additional action of the vibration, as a result of which the structure is shredded, as a
rule. This interpretation is in qualitative agreement with experimental results: a combination of a continuous shear with
an oscillation orthogonally directed to it causes [11] the structure to break down into aggregates whose size decreases
and whose number increases with increasing vibration intensity I = a2w3. The assembly-type model arranged as shown
in Fig. 7 illustrates the features of the structural changes in disperse systems with increasing I, which show up as a
change in the shape of the flow curves.

It also seems to be expedient to describe and analyze from the above standpoint the kinetic curves of the
structure formation of solidifying disperse systems. In the initial stages of the process of spontaneous evolution of
these systems, there occur qualitative jumps registered on the plots of such kinetic characteristics as fast elastic defor-
mation modulus, resonance frequency, and limiting shear stress. The effective theoretical description of such transitions
is hindered, since the structure formation of disperse composite materials is continuous processes of dissolution, solva-
tion, coagulation, etc. that are superimposed on one another. From the point of view of synergetics, solidifying dis-
perse composites are interpreted [24, 48, 49] as complex nonequilibrium physicochemical systems whose development
is accompanied by a self-organization of dissipative structures. Therefore, to reveal the general laws of the behavior of
such systems, it is expedient to use [20, 21] the approach based on the possibility of modeling the transition of
smooth quantitative changes to qualitative ones, i.e., the theory of catastrophes.

The literature data [50–52] point to the existence of a certain group of structure-formation kinetics curves
whose extreme form (Fig. 8) reproduces the geometry of the simplest fold-type catastrophe (Fig. 9). Agreement be-
tween experimental and model curves manifests itself not only in the above-mentioned superficial resemblance of the
character of the curves, but in their logical generalization as well.

Fig. 8. Curves of change with time τ in the fast elastic deformation modulus E
of MgO suspension: 1) without SAS; 2) with a 1% content of citric acid [50].
τ, h; E, Pa.

494



The explanation of the shape of the curves describing the time change in the fast elastic deformation modulus
and resonance frequency of magnesium-oxide-containing water suspensions of moulding powders is associated in [50]
with the specificity of the behavior of MgO. Dispersions including this component are characterized by a low critical
concentration of the structure formation at which a coagulation structure arises and bonding powers of MgO manifest
themselves similarly to cement-mineral mixtures. After a few hours, a sharp strengthening of the system due to the in-
teraction of MgO particles with water and the formation, as a result of this, of links between them in the form of
OH–Mg–O–(MgO)n–Mg–OH chains is observed. Such chains form with time a spatial skeleton and go into condensa-
tion-crystallization structures, which is illustrated by an increase in the deformation modulus (Fig. 8, curve 1). The
definite decrease in the values of the kinetic indices after 3.5 h is explained [50] by the possible softening of the sus-
pension in the initial stage of formation of point contacts. To prevent the formation of condensation-crystallization
structures and preserve the stability of the rheological properties of dispersions, it is necessary to constrain the growth
of structural chains and their interaction. The required effect is achieved by introducing into the suspension 0.5–1.0%
(of the solid-phase mass) citric acid C3H5O(COOH)3 interacting chemically with a hydrated surface of magnesium
oxide particles and molecules that are present in the solution. Since the dissociation constant of citric acid is small, the
reaction proceeds slowly. The reaction products formed block the particle surface, which restricts the formation of
strengthening structures and determines the constancy of the system’s properties (Fig. 8, curve 2).

A similar distinctive character of change in the deformation modulus is also observed [51] on the structure
formation curves for butyl-rubber-based vulcanizers filled with black, cement, or chalk. The graphic time dependences
of E, too, have marked bends that are, most probably, consequences of the destructive processes in the systems under
consideration. A similar conclusion was also drawn [52] for the shape of plastograms of binding dispersions. As is
emphasized in the above works, although the kinetic effect of the systems under investigation is theoretically not
clearly understood because of their complexity, it can be controlled by introducing various surface-active substances
(SAS).

In light of the foregoing, with regard for the laws given in Fig. 8, it is supposed that the fold-type catastrophe
combines in one scheme two possible, in this case, qualitatively different, "limiting" variants of structure-formation
curves (Fig. 9). Such an interpretation is not inconsistent with the physical meaning given for the standard model de-
scription. The three-dimensional picture of the fold-type catastrophe reflects the features of the change in E (or any
other index) as a function of time (in terms of the used theory τ is a generalized coordinate) at various concentrations
of SAS (control parameter C, %). The family of E(τ) curves has a shape analogous to the Van der Waals shape. In
the absence of or with a small content of an additive, the dependences have a maximum and a minimum. As C in-
creases, these points approach each other and at a certain value of C = Cc (similar to the Van der Waals critical tem-
perature) they merge into one point (fold point D). Consequently, the extrema correspond to the destructive drops on
the kinetic characteristics as a result of the self-organization processes and the parabola in Fig. 9 bounds the region of
thermodynamically unstable states of the system. The results of the investigations of the structure formation kinetics
reported in [50–52] are essentially a discussion of a particular case of the theory of catastrophes, and the considered

Fig. 9. Transformation of the curves of change with time τ in the fast elastic
deformation modulus E of MgO-containing suspension with increasing concen-
tration C of citric acid (fold-type catastrophe; D, fold point). τ, h; E, Pa; C, %.
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model surface, generalizing individual effects, graphically illustrates the qualitative restructuring in a solidifying disper-
sion. Moreover, the analysis of the experimental dependences [53] has shown that apart from the jump they feature
other so-called "indications of a catastrophe" [29] associated with specific properties of the system (e.g., hysteresis) as
well. This fact will make it possible to not only classify real situations according to the standardized types of catas-
trophes differing in the number of control parameters ("fold," "assembly," etc.) but also elucidate the physicochemical
mechanisms responsible for the extreme behavior of developing disperse systems.

Thus, the use of new notions for describing disperse systems under dynamic and static conditions with the
aim of establishing universal laws of their evolution not only provides the possibility of generalizing the known ex-
perimental results, but also gives hopes of predicting, revealing, and investigating a number of other phenomena that
are, in essence, specific variants of the limited number of laws of nonlinear synthesis of complex developing struc-
tures.

This work was supported by the Russian Basic Research Foundation (grant No. 00-03-32282) and the founda-
tion of "Leading Scientific Schools of Russia" (grant No. 00-15-97327).

NOTATION

η, effective viscosity, Pa⋅sec; P, shear stress, Pa; ε
.
, deformation rate, sec−1; ϕ, solid-phase concentration, mass

%; v, linear deformation rate, m/sec; ∆r, working spacing of the viscosimeter, mm; I, vibration intensity, m2⋅sec−3; a,
vibration amplitude, m; w, circular vibration frequency, sec−1; E, fast elastic deformation modulus, Pa; C, additive con-
centration, mass %; τ, time, h. Subscripts: c, critical; 1 and 2, first and second; min, minimum; max, maximum.
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